The Final Measurement of E'lE from NA48

R. ARCIDIACONO, COSMO-02

Outline

- ♦ The direct CP violation in the Neutral Kaon System
- \diamond History of ε'/ε measurements
- ♦ The NA48 experiment and its method
- ♦ The 2001 data taking and analysis (in short!)
- ♦ The FINAL result and conclusions

The direct CP violation in the Neutral Kaon System

Since <u>1964</u> we know that the physics eigenstates K_S , $K_L \neq CP$ eigenstates K_1 , K_2 $K_L \to \pi^+\pi^- \text{ observed with B.R.} = 2 \cdot 10^{-3}$

Indirect CP Violation

Direct CP Violation

CP violation in the mixing $\Rightarrow |\varepsilon| = (2.28 \pm 0.02) \times 10^{-3}$ Direct CP violation in the decay amplitude manifests itself thru interference of I=0,2 2π final states \Rightarrow parametrized with ε'

In <u>1973</u> Kobayashi and Maskawa present an interpretation of CP violation in the Standard Model postulating a third quark family...

Today many Standard Model computations of both ε and ε'

theoretical range for ε'/ε between -10 and 30×10^{-4}

History of ε'/ε measurements

All experiments so far used the Double Ratio method:

$$R = \frac{\Gamma(K_L^0 \to \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^+ \pi^-)} \frac{\Gamma(K_S^0 \to \pi^+ \pi^-)}{\Gamma(K_S^0 \to \pi^0 \pi^0)} \simeq 1 - 6 \times \text{Re}\left(\frac{\varepsilon'}{\varepsilon}\right)$$

fixed target experiments: $E731 \rightarrow KTeV$ at FNAL

 $NA31 \rightarrow NA48$ at CERN

Evolution of World Average:

Year	Average (10^{-4})	χ^2/ndf	χ^2 prob.
1993	14.4 ± 4.4	3.2/1	7%
1999	$19.2~\pm~2.5$	10.4/3	2%
2001	$17.3~\pm~1.7$	5.6/3	13%

The NA48 method

Experimental challenge: perform a <u>counting experiment</u> in the most unbiased way.

$$R = \frac{N(K_L \to \pi^0 \pi^0)[0.0009]}{N(K_S \to \pi^0 \pi^0)[0.314]} \frac{N(K_S \to \pi^+ \pi^-)[0.686]}{N(K_L \to \pi^+ \pi^-)[0.002]}$$

Accuracy wanted/needed on $\operatorname{Re}(\varepsilon'/\varepsilon): 2 \cdot 10^{-4} \Longrightarrow$

- \diamond high statistics needed (4–5 \times 10⁶ $K_L \to \pi^0 \pi^0$)
 - high intensity beams
 - powerful TRIGGER and DAQ Systems
- ♦ minimization of systematic effects

The NA48 method

NA48 recipe to exploit cancellation of systematic effects

- ♦ the 4 decay modes are taken simultaneously
- ⇒ cancellation of fluxes, dead–times, inefficiencies, accidental losses
 - \diamond from the same fiducial region (lifetime $\leq 3.5 \tau_S$) and two quasi-collinear beams, with offline lifetime weighting applied to K_L events to equalize distribution of K_S and K_L decay positions
- \Rightarrow small acceptance correction
 - \diamond with high resolution magnetic spectrometer $(\pi^+\pi^-)$ and quasi-homogeneous Liquid Krypton calorimeter $(\pi^0\pi^0)$
- \Rightarrow small background levels
 - \diamond with similar energy spectra remaining K_S / K_L differences are minimized performing the analysis in energy bins (20 between 70 and 170 GeV)

The Simultaneous K_L and K_S Beams

The K_S events are identified by <u>tagging the parent proton</u> (measurement of the proton time in the tagging station)

The NA48 Detector

$$K_{S,L} o \pi^+\pi^-$$

Magnetic spectrometer

$$\begin{split} &\sigma_{X,Y} \sim 95~\mu\text{m} \\ &\sigma_{K~mass} \sim 2.5~MeV/c^2 \\ &\text{resolution on } (x,y)~\text{vertex} \, \sim \, 2 \\ &\text{mm} \, \rightarrow \, \text{allows for beams separation} \end{split}$$

Hodoscope event time measurement ($\sigma_t \sim 200 \ ps$) μ veto to reject $\pi \mu \nu$ background.

$$K_{S,L} o \pi^0 \pi^0$$

Liquid Krypton electromagnetic calorimeter with high granularity (~ 13500 cells) $\sigma_t \sim 220~ps$ $\frac{\sigma(E)}{E} < 1~\%$ for $E_\gamma > 25~GeV$ $\sigma_{\pi^0~mass} \simeq 1.1~MeV/c^2$

Tagging K_S events...

A K_S is defined by $|T_{tag} - T_{det}| < 2$ ns

The Heart of the system: Tagging Station

Tagging station:

 $\overline{2 \times 12}$ thin scintillator foils to stand a proton rate $\sim\!\!28$ MHz read-out by Flash-ADC 8 bits at 960 MHz \Rightarrow time resolution 140 ps, double-pulse separation 4~ns

In the ideal world ...

biases

... but, these corrections are small, < 0.3% by first principles

History data samples collected by NA48

year	days	ppp on K _L target	$K_L \rightarrow \pi^0 \pi^0$
1997	89	1×10^{12}	0.49 million
			$Re(\varepsilon'/\varepsilon) = (18.5 \pm 4.5 \pm 5.8) \times 10^{-4}$ Phys. Lett. B 465 (1999) 335-348
1998	135	1.4×10^{12}	1.05 million
1999	128	1.4×10^{12}	2.24 million
			$\text{Re}(\varepsilon'/\varepsilon) = (15.0 \pm 1.7 \pm 2.1) \times 10^{-4}$ Eur.Phys.J. C22 (2001) 231-254
2000	NO ε'/ε	DCH damaged in Nov. 99	
2001	90	$2.4 \times 10^{12} \ (**)$	1.55 million
			$Re(\varepsilon'/\varepsilon) = (13.7 \pm 2.5 \pm 1.8) \times 10^{-4}$ preprint CERN-EP-2002-061

** modified beam parameters

The 1998+1999 intensity-dependent corrections

The 2001 data taking

→ Collect additional data under <u>varied conditions</u> to test the intensity related systematics of the measurement

instantaneous intensity

SPS spill duty cycle
$$2.4/14.4 \text{ s} \rightarrow 5.2/16.8 \text{ s}$$
 proton beam energy $450 \text{ GeV} \rightarrow 400 \text{ GeV}$ instantaneous intensity $\sim 30 \% \text{ lower}$

DCH overflow rate

$$21.5\% \rightarrow 11.7\%$$

Analysis 2001: acceptance correction

Residual acceptance difference corrected on R:

$$(21.9 \pm 3.5 \pm 4.0) \times 10^{-4}$$

Analysis 2001: accidental correction

The accidental activity coming from the beams (mostly K_L) induces event losses (if it overlaps in time and/or space with a good event! \Rightarrow reconstruction or selection affected)

- → The concurrency and correlation of the two beams minimize this effect
- \rightarrow If losses depend linearly from intensity \Rightarrow residual correction

$$\Delta R \simeq \Delta I/I \times \Delta P_{\lambda}$$

- $\Delta P_{\lambda} = P_{\lambda}(\pi^{+}\pi^{-}) P_{\lambda}(\pi^{0}\pi^{0})$ is the difference of event loss probability for charged and neutral decays.
- $\Delta I/I$ is the average difference of instantaneous intensity seen by K_L and K_S events

Special overlay of random triggered events to real and MC data is used to estimate $\Delta P_{\lambda} = 1.0 \pm 0.5\%$

Analysis 2001: accidental correction (2)

$\Delta I/I$

Accidental activity (extra clusters and tracks) seen by good events, is measured identical within 1% between K_S et K_L . Thanks to new beam monitor integrators measuring beams intensity within short timescales (0.2, 1, 3, 15 μ s), the accidental activity and the beams correlation are also checked with those $\Delta I/I < 1\%$

$$\implies$$
 uncertainty on R = $\pm 1.1 \times 10^{-4}$ (was 30% for 98/99 data, from ΔP_{λ})

Geometrical difference of K_S , K_L detector illumination coupled with geometry dependent event losses is checked with overlay events

$$\implies$$
 uncertainty on R = $\pm 3 \times 10^{-4}$

The 2001 Result

Corrections and uncertainties on R (Units = 10^{-4}) errors are of pure statistical or pure systematical nature

	2001				1998/1999					
statistical error		±	14.7				土	10.1		
$\pi^0\pi^0$ reconstruction				\pm	5.3				\pm	5.8
Acceptance	21.9	\pm	3.5	\pm	4.0	26.7	\pm	4.1	\pm	4.0
$\pi^+\pi^-$ trigger inefficiency	5.2	\pm	3.6			-3.6	\pm	5.2		
Accidentals: intensity diff.				\pm	1.1				\pm	3.0
illumination diff.		\pm	3.0				\pm	3.0		
K_{S} in-time activity				\pm	1.0				\pm	1.0
Accidental tagging	6.9	\pm	2.8			8.3	\pm	3.4		
Tagging inefficiency				\pm	3.0				\pm	3.0
$\pi^+\pi^-$ background	14.2			\pm	3.0	16.9			\pm	3.0
$\pi^+\pi^-$ reconstruction				\pm	2.8				\pm	2.8
beam scattering	-8.8			\pm	2.0	-9.6			\pm	2.0
$\pi^0\pi^0$ background	-5.6			\pm	2.0	-5.9			\pm	2.0
AKS inefficiency	1.2			\pm	0.3	1.1			\pm	0.4
Total systematic	+35.0	土	6.5	土	9.0	+35.9	土	8.1	±	9.6

 $R = 0.99181 \pm 0.00147_{stat} \pm 0.00110_{syst}$

THE FINAL RESULT

From 2001 data:

$$Re(\varepsilon'/\varepsilon) = (13.7 \pm 3.1) \times 10^{-4}$$

measured under different beam conditions and with new drift chambers

combined with the 97+99+99 value
$$(15.3 \pm 2.6) \times 10^{-4}$$

we obtained the FINAL RESULT

$$Re(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4}$$

- → 4 years of data—taking
- → proposed accuracy has been reached ©

Conclusions

The EMD for the E'lE NA48 community

KTEV final result still to come...

KLOE at DAPHNE ϕ factory will measure Re(ε'/ε) and $Im(\varepsilon'/\varepsilon)$ with an alternative and nice method... needs luminosity!

THEORY has a nice accurate measurement to interpret!